

LOW NOISE RECEIVERS AND THEIR CALIBRATION*

Charles T. Stelzried
Jet Propulsion Laboratory
Pasadena, California 91103

Low noise microwave receiving systems are particularly important for deep space communications systems, radio astronomy and some sensitive laboratory measurement systems¹ such as transmission spectroscopy². Dramatic improvements in microwave receivers have reduced noise figures from the range of 10 dB to tenths of dB's in the last 15 to 20 years³. Although cooled parametric amplifiers⁴ provide a very practical performance compromise for ultra low noise, wide bandwidth and low cost, the maser has the lowest noise temperature of any practical microwave amplifier.

	Freq.	T _{op} (K)	T _e (K)	T _m (K)
Goldstone 64m Antenna	2295 MHz	15.6	4.3	4.1
"	8415 MHz	20.0	6.1	6.0
"	15.3 GHz	27.0	8.5	8.4
Minimum Horn/Maser*	2295 MHz	10.7	4.3	4.2
"	8465 MHz	12.4	6.1	6.0
"	15.3 GHz	18.5	8.7	8.4

*System located on ground

Examples of Some JPL 1972 Ultra Low Noise
Maser Receiving Systems⁵ Pointed at Zenith

Although the system operating noise temperatures can be determined by accounting for the individual system components, it is usually most accurately determined from a direct measurement. This is a key parameter required to determine system sensitivity and can be conveniently measured by switching the receiver input between an ambient termination and the antenna (or other source). With this technique⁶

$$T_{op} = \frac{T_p + T_e}{Y_{ap}}$$

where

T_e = receiver effective noise temperature, K.

T_p = ambient termination physical temperature, K.

Y_{ap} = the output noise power ratio obtained when switching between the antenna and the ambient termination.

This requires a separate calibration of T_e but is especially convenient if T_e < T_p.

Calibration of the noise contributions of the individual system components is important from the standpoint of component specification and system performance prediction and verification. The most accurate calibration of T_e can be obtained by switching the receiver between two precision thermal noise standards^{7,8,9}. The amplifier effective noise temperature is given by¹⁰

$$T_e = \frac{T_{hot} - YT_{cold}}{Y - 1}$$

D. Wait⁷ itemizes 7 important sources of error:

1. Uncertainty in the value of T_{hot}.
2. Uncertainty in the value of T_{cold}.
3. Uncertainty in the measurement of Y.
4. Amplifier nonlinearity and instability during the measurement of Y.
5. Mismatched System^{7,11}.
6. Non ideal connectors.
7. "Cascade" error.

REFERENCES

1. Buckmaster, H. A. and Dering, J. C., "The Sensitivity of Electron Paramagnetic Resonance Spectrometers Using Paramagnetic and Maser Pre-amplifiers," Journal of Scientific Instruments, 1964, Vol. 44, pg. 430.
2. Schultz, S., Private Communication.
3. Okwit, S., "Microwave Noise --The Older It Gets, The Tamer It Becomes," Microwave Journal, Vol. 16, No. 1, January 1973, pg. 6.
4. Okean, H. C., and Lombardo, P. P., "Noise Performance of M/W and MM-Wave Receivers," Microwave Journal, Vol. 16, No. 1, January 1973, pg. 41.
5. Reid, M. S., Clauss, R. C., Bathker, D. A., and Stelzried, C. T., "Low-Noise Microwave Receiving Systems in a World Wide Network of Large Antennas," to be published in the Proceedings of the IEEE, September 1973.
6. Stelzried, C. T., "Operating Noise-Temperature Calibrations of Low-Noise Receiving Systems," Microwave Journal, Vol. 14, No. 6, June 1971, pg. 41.
7. Wait, D. F., "Measurement of Amplifier Noise," Microwave Journal, Vol. 16, No. 1, January 1973, pg. 25.
8. Stelzried, C. T., "Microwave Thermal Noise Standards," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, No. 9, September 1968, pg. 646.
9. Miller, C. K. S., Daywitt, W. C., and Arthur, M. G. "Noise Standards, Measurements, and Receiver Noise Definitions," Proceedings IEEE, Vol. 55, No. 6, pp. 865-877, June 1967.
10. Mumford, W. W., and Scheibe, E. H., "Noise Performance Factors in Communication Systems," Horizon House-Microwave, Inc., Dedham, Massachusetts, 1968.
11. Otoshi, T. Y., "The Effect of Mismatched Components on Microwave Noise-Temperature Calibrations," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, No. 9, September 1968, pp. 675-686.

*This paper presents one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.